

Chapter 7

XAML vs. code

C# is undoubtedly one of the greatest programming languages the world has ever seen. You can write

entire Xamarin.Forms applications in C#, and it’s conceivable that you’ve found C# to be so ideally

suited for Xamarin.Forms that you haven’t even considered using anything else.

But keep an open mind. Xamarin.Forms provides an alternative to C# that has some distinct ad-

vantages for certain aspects of program development. This alternative is XAML (pronounced "zam-

mel"), which stands for the Extensible Application Markup Language. Like C#, XAML was developed at

Microsoft Corporation, and it is only a few years younger than C#.

As its name suggests, XAML adheres to the syntax of XML, the Extensible Markup Language. This

book assumes that you have familiarity with the basic concepts and syntax of XML.

In the most general sense, XAML is a declarative markup language used for instantiating and initial-

izing objects. That definition might seem excessively general, and XAML is indeed quite flexible. But

most real-world XAML has been used for defining tree-structured visual user interfaces characteristic of

graphical programming environments. The history of XAML-based user interfaces begins with the

Windows Presentation Foundation (WPF) and continues with Silverlight, Windows Phone 7 and 8, and

Windows 8 and 10. Each of these XAML implementations supports a somewhat different set of visual

elements defined by the particular platform. Likewise, the XAML implementation in Xamarin.Forms

supports the visual elements defined by Xamarin.Forms, such as Label, BoxView, Frame, Button,

StackLayout, and ContentPage.

As you've seen, a Xamarin.Forms application written entirely in code generally defines the initial ap-

pearance of its user interface in the constructor of a class that derives from ContentPage. If you

choose to use XAML, the markup generally replaces this constructor code. You will find that XAML pro-

vides a more succinct and elegant definition of the user interface and has a visual structure that better

mimics the tree organization of the visual elements on the page.

XAML is also generally easier to maintain and modify than equivalent code. Because XAML is XML, it

is also potentially toolable: XAML can more easily be parsed and edited by software tools than the

equivalent C# code. Indeed, an early impetus behind XAML was to facilitate a collaboration between

programmers and designers: Designers can use design tools that generate XAML, while programmers

focus on the code that interacts with the markup. While this vision has perhaps only rarely been ful-

filled to perfection, it certainly suggests how applications can be structured to accommodate XAML.

You use XAML for the visuals and code for the underlying logic.

Yet, XAML goes beyond that simple division of labor. As you’ll see in a future chapter, it’s possible to

define bindings right in the XAML that link user-interface objects with underlying data.

Chapter 7 XAML vs. code 132

When creating XAML for Microsoft platforms, some developers use interactive design tools such as

Microsoft Blend, but many others prefer to handwrite XAML. No design tools are available for Xama-

rin.Forms, so handwriting is the only option. Obviously, all the XAML examples in this book are hand-

written. But even when design tools are available, the ability to handwrite XAML is an important skill.

The prospect of handwriting XAML might cause some consternation among developers for another

reason: XML is notoriously verbose. Yet, you’ll see almost immediately that XAML is often more concise

than the equivalent C# code. The real power of XAML becomes evident only incrementally, however,

and won’t be fully apparent until Chapter 19, “Collection views,” when you use XAML for constructing

templates for multiple items displayed in a ListView.

It is natural for programmers who prefer strongly typed languages such as C# to be skeptical of a

markup language where everything is a text string. But you’ll see shortly how XAML is a very strict ana-

log of programming code. Much of what’s allowed in your XAML files is defined by the classes and

properties that make up the Xamarin.Forms application programming interface. For this reason, you

might even begin to think of XAML as a "strongly typed" markup language. The XAML parser does its

job in a very mechanical manner based on the underlying API infrastructure. One of the objectives of

this chapter and the next is to demystify XAML and illuminate what happens when the XAML is parsed.

Yet, code and markup are very different: Code defines a process while markup defines a state. XAML

has several deficiencies that are intrinsic to markup languages: XAML has no loops, no flow control, no

algebraic calculation syntax, and no event handlers. However, XAML defines several features that help

compensate for some of these deficiencies. You’ll see many of these features in future chapters.

If you do not want to use XAML, you don’t need to. Anything that can be done in XAML can be

done in C#. But watch out: Sometimes developers get a little taste of XAML and get carried away and

try to do everything in XAML! As usual, the best rule is “moderation in all things.” Many of the best

techniques involve combining code and XAML in interactive ways.

Let's begin this exploration with a few snippets of code and the equivalent XAML, and then see how

XAML and code fit together in a Xamarin.Forms application.

Properties and attributes

Here is a Xamarin.Forms Label instantiated and initialized in code, much as it might appear in the

constructor of a page class:

new Label

{

 Text = "Hello from Code!",

 IsVisible = true,

 Opacity = 0.75,

 HorizontalTextAlignment = TextAlignment.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand,

 TextColor = Color.Blue,

Chapter 7 XAML vs. code 133

 BackgroundColor = Color.FromRgb(255, 128, 128),

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold | FontAttributes.Italic

};

Here is a very similar Label instantiated and initialized in XAML, which you can see immediately is

more concise than the equivalent code:

<Label Text="Hello from XAML!"

 IsVisible="True"

 Opacity="0.75"

 HorizontalTextAlignment="Center"

 VerticalOptions="CenterAndExpand"

 TextColor="Blue"

 BackgroundColor="#FF8080"

 FontSize="Large"

 FontAttributes="Bold,Italic" />

Xamarin.Forms classes such as Label become XML elements in XAML. Properties such as Text,

IsVisible, and the rest become XML attributes in XAML.

To be instantiated in XAML, a class such as Label must have a public parameterless constructor. (In

the next chapter, you’ll see that there is a technique to pass arguments to a constructor in XAML, but

it’s generally used for special purposes.) The properties set in XAML must have public set accessors. By

convention, spaces surround an equal sign in code but not in XML (or XAML), but you can use as much

white space as you want.

The concision of the XAML results mostly from the brevity of the attribute values—for example, the

use of the word "Large" rather than a call to the Device.GetNamedSize method. These abbreviations

are not built into the XAML parser. The XAML parser is instead assisted by various converter classes de-

fined specifically for this purpose.

When the XAML parser encounters the Label element, it can use reflection to determine whether

Xamarin.Forms has a class named Label, and if so, it can instantiate that class. Now it is ready to ini-

tialize that object. The Text property is of type string, and the attribute value is simply assigned to

that property.

Because XAML is XML, you can include Unicode characters in the text by using the standard XML

syntax. Precede the decimal Unicode value with &# (or the hexadecimal Unicode value with &#x) and

follow it with a semicolon:

Text="Cost — €123.45"

Those are the Unicode values for the em dash and euro symbol. To force a line break, use the line-feed

character
, or (because leading zeros aren’t required)
, or, in decimal,
.

Angle brackets, ampersands, and quotation marks have a special meaning in XML, so to include

those characters in a text string, use one of the standard predefined entities:

 < for <

Chapter 7 XAML vs. code 134

 > for >

 & for &

 ' for '

 " for "

The HTML predefined entities such as are not supported. For a nonbreaking space use

instead.

In addition, in Chapter 10, “XAML markup extensions,” you’ll discover that curly braces ({ and }) have

a special meaning in XAML. If you need to begin an attribute value with a left curly brace, begin it with

a pair of curly braces ({}) and then the left curly brace.

Back to the example: The IsVisible and Opacity properties of Label are of type bool and dou-

ble, respectively, and these are as simple as you might expect. The XAML parser uses the Bool-

ean.Parse and Double.Parse methods to convert the attribute values. The Boolean.Parse

method is case insensitive, but generally Boolean values are capitalized as “True” and “False” in XAML.

The Double.Parse method is passed a CultureInfo.InvariantCulture argument, so the conver-

sion doesn’t depend on the local culture of the programmer or user.

The HorizontalTextAlignment property of Label is of type TextAlignment, which is an enu-

meration. For any property that is an enumeration type, the XAML parser uses the Enum.Parse

method to convert from the string to the value.

The VerticalOptions property is of type LayoutOptions, a structure. When the XAML parser

references the LayoutOptions structure using reflection, it discovers that the structure has a C# at-

tribute defined:

[TypeConverter (typeof(LayoutOptionsConverter))]

public struct LayoutOptions

{

 …

}

(Watch out! This discussion involves two types of attributes: XML attributes such as HorizontalText-

Alignment and C# attributes such as this TypeConverter.)

The TypeConverter attribute is supported by a class named TypeConverterAttribute. This par-

ticular TypeConverter attribute on LayoutOptions references a class named LayoutOptionsCon-

verter, which derives from a public abstract class named TypeConverter that defines methods

named CanConvertFrom and ConvertFrom. When the XAML parser encounters this TypeConverter

attribute, it instantiates the LayoutOptionsConverter. The VerticalOptions attribute in the XAML

is assigned the string “Center”, so the XAML parser passes that “Center” string to the ConvertFrom

method of LayoutOptionsConverter, and out pops a LayoutOptions value. This is assigned to the

VerticalOptions property of the Label object.

Chapter 7 XAML vs. code 135

Similarly, when the XAML parser encounters the TextColor and BackgroundColor properties, it

uses reflection to determine that those properties are of type Color. The Color structure is also

adorned with a TypeConverter attribute:

[TypeConverter (typeof(ColorTypeConverter))]

public struct Color

{

 …

}

You can create an instance of ColorTypeConverter and experiment with it in code if you'd like. It

accepts color definitions in several formats: It can convert a string like “Blue” to the Color.Blue value,

and the “Default” and “Accent” strings to the Color.Default and Color.Accent values. Color-

TypeConverter can also parse strings that encode red-green-blue values, such as “#FF8080”, which is

a red value of 0xFF, a green value of 0x80, and a blue value also of 0x80.

All numeric RGB values begin with a number-sign prefix, but that prefix can be followed with eight,

six, four, or three hexadecimal digits for specifying color values with or without an alpha channel.

Here’s the most extensive syntax:

BackgroundColor="#aarrggbb"

Each of the letters represents a hexadecimal digit, in the order alpha (opacity), red, green, and blue. For

the alpha channel, keep in mind that 0xFF is fully opaque and 0x00 is fully transparent. Here’s the syn-

tax without an alpha channel:

BackgroundColor="#rrggbb"

In this case the alpha value is set to 0xFF for full opacity.

Two other formats allow you to specify only a single hexadecimal digit for each channel:

BackgroundColor="#argb"

BackgroundColor="#rgb"

In these cases, the digit is repeated to form the value. For example, #CF3 is the RGB color 0xCC-0xFF-

0x33. These short formats are rarely used.

The FontSize property of Label is of type double. This is a little different from properties of type

LayoutOptions and Color. The LayoutOptions and Color structures are part of Xamarin.Forms, so

they can be flagged with the C# TypeConverter attribute, but it’s not possible to flag the .NET

Double structure with a TypeConverter attribute just for font sizes!

Instead, the FontSize property within the Label class has the TypeConverter attribute:

public class Label : View, IFontElement

{

 …

 [TypeConverter (typeof (FontSizeConverter))]

 public double FontSize

 {

Chapter 7 XAML vs. code 136

 …

 }

 …

}

The FontSizeConverter class determines whether the string passed to it is one of the members of

the NamedSize enumeration. If not, FontSizeConverter assumes the value is a double.

The last attribute set in the example is FontAttributes. The FontAttributes property is an enu-

meration named FontAttributes, and you already know that the XAML parser handles enumeration

types automatically. However, the FontAttributes enumeration has a C# Flags attribute set like so:

[Flags]

public enum FontAttributes

{

 None = 0,

 Bold = 1,

 Italic = 2

}

The XAML parser therefore allows multiple members separated by commas:

FontAttributes="Bold,Italic"

This demonstration of the mechanical nature of the XAML parser should be very good news. It

means that you can include custom classes in XAML, and these classes can have properties of custom

types, or the properties can be of standard types but allow additional values. All you need is to flag

these types or properties with a C# TypeConverter attribute and provide a class that derives from

TypeConverter.

Property-element syntax

Here is some C# that is similar to the FramedText code in Chapter 4. In one statement it instantiates a

Frame and a Label and sets the Label to the Content property of the Frame:

new Frame

{

 OutlineColor = Color.Accent,

 HorizontalOptions = LayoutOptions.Center,

 VerticalOptions = LayoutOptions.Center,

 Content = new Label

 {

 Text = "Greetings, Xamarin.Forms!"

 }

};

But when you start to duplicate this in XAML, you might become a little stymied at the point where

you set the Content attribute:

<Frame OutlineColor="Accent"

Chapter 7 XAML vs. code 137

 HorizontalOptions="Center"

 VerticalOptions="Center"

 Content=" what goes here? " />

How can that Content attribute be set to an entire Label object?

The solution to this problem is the most fundamental feature of XAML syntax. The first step is to

separate the Frame tag into start and end tags:

<Frame OutlineColor="Accent"

 HorizontalOptions="Center"

 VerticalOptions="Center">

</Frame>

Within those tags, add two more tags that consist of the element (Frame) and the property you want

to set (Content) connected with a period:

<Frame OutlineColor="Accent"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Frame.Content>

 </Frame.Content>

</Frame>

Now put the Label within those tags:

<Frame OutlineColor="Accent"

 HorizontalOptions="Center"

 VerticalOptions="Center">

 <Frame.Content>

 <Label Text="Greetings, Xamarin.Forms!" />

 </Frame.Content>

</Frame>

That syntax is how you set a Label to the Content property of the Frame.

You might wonder if this XAML feature violates XML syntax rules. It does not. The period has no

special meaning in XML, so Frame.Content is a perfectly valid XML tag. However, XAML imposes its

own rules about these tags: The Frame.Content tags must appear within Frame tags, and no attrib-

utes can be set in the Frame.Content tag. The object set to the Content property appears as the

XML content of those tags.

Once this syntax is introduced, some terminology becomes necessary. In the final XAML snippet

shown above:

 Frame and Label are C# objects expressed as XML elements. They are called object elements.

 OutlineColor, HorizontalOptions, VerticalOptions, and Text are C# properties ex-

pressed as XML attributes. They are called property attributes.

Chapter 7 XAML vs. code 138

 Frame.Content is a C# property expressed as an XML element, and it is therefore called a

property element.

Property elements are very common in real-life XAML. You’ll see numerous examples in this chapter

and future chapters, and you’ll soon find property elements becoming second nature to your use of

XAML. But watch out: Sometimes developers must remember so much that we forget the basics. Even

after you’ve been using XAML for a while, you’ll probably encounter a situation where it doesn’t seem

possible to set a particular object to a particular property. The solution is very often a property

element.

You can also use property-element syntax for simpler properties, for example:

<Frame HorizontalOptions="Center">

 <Frame.VerticalOptions>

 Center

 </Frame.VerticalOptions>

 <Frame.OutlineColor>

 Accent

 </Frame.OutlineColor>

 <Frame.Content>

 <Label>

 <Label.Text>

 Greetings, Xamarin.Forms!

 </Label.Text>

 </Label>

 </Frame.Content>

</Frame>

Now the VerticalOptions and OutlineColor properties of Frame and the Text property of Label

have all become property elements. The value of these attributes is always the content of the property

element without quotation marks.

Of course, it doesn’t make much sense to define these properties as property elements. It’s unneces-

sarily verbose. But it works as it should.

Let’s go a little further: Instead of setting HorizontalOptions to “Center” (corresponding to the

static property LayoutOptions.Center), you can express HorizontalOptions as a property ele-

ment and set it to a LayoutOptions value with its individual properties set:

<Frame>

 <Frame.HorizontalOptions>

 <LayoutOptions Alignment="Center"

 Expands="False" />

 </Frame.HorizontalOptions>

 <Frame.VerticalOptions>

 Center

 </Frame.VerticalOptions>

 <Frame.OutlineColor>

 Accent

 </Frame.OutlineColor>

 <Frame.Content>

Chapter 7 XAML vs. code 139

 <Label>

 <Label.Text>

 Greetings, Xamarin.Forms!

 </Label.Text>

 </Label>

 </Frame.Content>

</Frame>

And you can also express these properties of LayoutOptions as property elements:

<Frame>

 <Frame.HorizontalOptions>

 <LayoutOptions>

 <LayoutOptions.Alignment>

 Center

 </LayoutOptions.Alignment>

 <LayoutOptions.Expands>

 False

 </LayoutOptions.Expands>

 </LayoutOptions>

 </Frame.HorizontalOptions>

 …

</Frame>

You can’t set the same property as a property attribute and a property element. That’s setting the

property twice, and it’s not allowed. And remember that nothing else can appear in the property-

element tags. The value being set to the property is always the XML content of those tags.

Now you should know how to use a StackLayout in XAML. First express the Children property as

the property element StackLayout.Children, and then include the children of the StackLayout as

XML content of the property-element tags. Here’s an example where each child of the first StackLay-

out is another StackLayout with a horizontal orientation:

<StackLayout>

 <StackLayout.Children>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Red" />

 <Label Text="Red"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Green" />

 <Label Text="Green"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

Chapter 7 XAML vs. code 140

 <BoxView Color="Blue" />

 <Label Text="Blue"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 </StackLayout.Children>

</StackLayout>

Each horizontal StackLayout has a BoxView with a color and a Label with that color name.

Of course, the repetitive markup here looks rather scary! What if you wanted to display 16 colors?

Or 140? You might succeed at first with a lot of copying and pasting, but if you then needed to refine

the visuals a bit, you’d be in bad shape. In code you’d do this in a loop, but XAML has no such feature.

When markup threatens to be overly repetitious, you can always use code. Defining some of a user

interface in XAML and the rest in code is perfectly reasonable. But there are other solutions, as you’ll

see in later chapters.

Adding a XAML page to your project

Now that you’ve seen some snippets of XAML, let’s look at a whole XAML page in the context of a

complete program. First, create a Xamarin.Forms solution named CodePlusXaml using the Portable

Class Library solution template.

Now add a XAML ContentPage to the PCL. Here’s how: In Visual Studio, right-click the

CodePlusXaml project in the Solution Explorer. Select Add > New Item from the menu. In the Add

New Item dialog, select Visual C# and Cross-Platform at the left, and Forms Xaml Page from the

central list. Name it CodePlusXamlPage.cs.

In Xamarin Studio, invoke the drop-down menu on the CodePlusXaml project in the Solution list,

and select Add > New File. In the New File dialog, select Forms at the left and Forms ContentPage

Xaml in the central list. (Watch out: There’s also a Forms ContentView Xaml in the list. You want a

content page.) Name it CodePlusXamlPage.

In either case, two files are created:

 CodePlusXamlPage.xaml, the XAML file; and

 CodePlusXamlPage.xaml.cs, a C# file (despite the odd double extension on the filename).

In the file list, the second file is indented underneath the first, indicating their close relationship. The C#

file is often referred to as the code-behind of the XAML file. It contains code that supports the markup.

These two files both contribute to a class named CodePlusXamlPage that derives from ContentPage.

Let’s examine the code file first. Excluding the using directives, it looks like this:

Chapter 7 XAML vs. code 141

namespace CodePlusXaml

{

 public partial class CodePlusXamlPage : ContentPage

 {

 public CodePlusXamlPage()

 {

 InitializeComponent();

 }

 }

}

It is indeed a class named CodePlusXamlPage that derives from ContentPage, just as anticipated.

However, the class definition includes a partial keyword, which usually indicates that this is only part

of the CodePlusXamlPage class definition. Somewhere else there should be another partial class defi-

nition for CodePlusXamlPage. So if it exists, where is it? It’s a mystery! (For now.)

Another mystery is the InitializeComponent method that the constructor calls. Judging solely

from the syntax, it seems as though this method should be defined or inherited by ContentPage. Yet

you won’t find InitializeComponent in the API documentation.

Let’s set those two mysteries aside temporarily and look at the XAML file. The Visual Studio and

Xamarin Studio templates generate two somewhat different XAML files. If you’re using Visual Studio,

delete the markup for the Label and replace it with ContentPage.Content property-element tags

so that it looks like the version in Xamarin Studio:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="CodePlusXaml.CodePlusXamlPage">

 <ContentPage.Content>

 </ContentPage.Content>

</ContentPage>

The root element is ContentPage, which is the class that CodePlusXamlPage derives from. That tag

begins with two XML namespace declarations, both of which are URIs. But don’t bother checking the

web addresses! There’s nothing there. These URIs simply indicate who owns the namespace and what

function it serves.

The default namespace belongs to Xamarin. This is the XML namespace for elements in the file with

no prefix, such as the ContentPage tag. The URI includes the year that this namespace came into be-

ing and the word forms as an abbreviation for Xamarin.Forms.

The second namespace is associated with a prefix of x by convention, and it belongs to Microsoft.

This namespace refers to elements and attributes that are intrinsic to XAML and are found in every

XAML implementation. The word winfx refers to a name once used for the .NET Framework 3.0, which

introduced WPF and XAML. The year 2009 refers to a particular XAML specification, which also implies

a particular collection of elements and attributes that build upon the original XAML specification,

which is dated 2006. However, Xamarin.Forms implements only a subset of the elements and attributes

in the 2009 specification.

Chapter 7 XAML vs. code 142

The next line is one of the attributes that is intrinsic to XAML, called Class. Because the x prefix is

almost universally used for this namespace, this attribute is commonly referred to as x:Class and pro-

nounced “x class.”

The x:Class attribute can appear only on the root element of a XAML file. It specifies the .NET

namespace and name of a derived class. The base class of this derived class is the root element. In

other words, this x:Class specification indicates that the CodePlusXamlPage class in the

CodePlusXaml namespace derives from ContentPage. That’s exactly the same information as the

CodePlusXamlPage class definition in the CodePlusXamlPage.xaml.cs file.

Let’s add some content to this ContentPage in the XAML file. This requires setting something to

the Content property, which in the XAML file means putting something between ContentPage.Con-

tent property-element tags. Begin the content with a StackLayout, and then add a Label to the

Children property:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="CodePlusXaml.CodePlusXamlPage">

 <ContentPage.Content>

 <StackLayout>

 <StackLayout.Children>

 <Label Text="Hello from XAML!"

 IsVisible="True"

 Opacity="0.75"

 HorizontalTextAlignment="Center"

 VerticalOptions="CenterAndExpand"

 TextColor="Blue"

 BackgroundColor="#FF8080"

 FontSize="Large"

 FontAttributes="Bold,Italic" />

 </StackLayout.Children>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

That’s the XAML Label you saw at the beginning of this chapter.

You’ll now need to change the App class to instantiate this page just like you do with a code-only

derivative of ContentPage:

namespace CodePlusXaml

{

 public class App : Application

 {

 public App()

 {

 MainPage = new CodePlusXamlPage();

 }

 …

 }

}

Chapter 7 XAML vs. code 143

You can now build and deploy this program. After you do so, it’s possible to clear up a couple of

mysteries encountered earlier in this section:

In Visual Studio, in the Solution Explorer, select the CodePlusXaml project, find the icon at the top

with the tooltip Show All Files, and toggle that on.

In Xamarin Studio, in the Solution file list, invoke the drop-down menu for the whole solution, and

select Display Options > Show All Files.

In the CodePlusXaml Portable Class Library project, find the obj folder and within that, the Debug

folder. You’ll see a file named CodePlusXamlPage.xaml.g.cs. Notice the g in the filename. That stands

for generated. Here it is, complete with the comment that tells you that this file is generated by a tool:

//--

// <auto-generated>

// This code was generated by a tool.

// Runtime Version:4.0.30319.42000

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

//--

namespace CodePlusXaml {

 using System;

 using Xamarin.Forms;

 using Xamarin.Forms.Xaml;

 public partial class CodePlusXamlPage : global::Xamarin.Forms.ContentPage {

 [System.CodeDom.Compiler.GeneratedCodeAttribute("Xamarin.Forms.Build.Tasks.XamlG",

 "0.0.0.0")]

 private void InitializeComponent() {

 this.LoadFromXaml(typeof(CodePlusXamlPage));

 }

 }

}

During the build process, the XAML file is parsed, and this code file is generated. Notice that it’s a

partial class definition of CodePlusXamlPage, which derives from ContentPage, and the class con-

tains a method named InitializeComponent.

In other words, it’s a perfect fit for the CodePlusXamlPage.xaml.cs code-behind file. After the

CodePlusXamlPage.xaml.g.cs file is generated, the two files can be compiled together as if they were

just normal C# partial class definitions.

At run time, the App class instantiates the CodePlusXamlPage class. The CodePlusXamlPage con-

structor (defined in the code-behind file) calls InitializeComponent (defined in the generated file),

and InitializeComponent calls LoadFromXaml. This is an extension method for View defined in the

Extensions class in the Xamarin.Forms.Xaml assembly. What LoadFromXaml does depends on

Chapter 7 XAML vs. code 144

whether you’ve chosen to compile the XAML or not (as discussed in the next section). But when the

InitializeComponent method returns, the whole page is in place, just as though everything had

been instantiated and initialized in code in the CodePlusXamlPage constructor.

It’s possible to continue adding content to the page in the constructor of the code-behind file, but

only after the InitializeComponent call returns. Let’s take this opportunity to create another Label

by using some code from earlier in this chapter:

namespace CodePlusXaml

{

 public partial class CodePlusXamlPage : ContentPage

 {

 public CodePlusXamlPage()

 {

 InitializeComponent();

 Label label = new Label

 {

 Text = "Hello from Code!",

 IsVisible = true,

 Opacity = 0.75,

 HorizontalTextAlignment = TextAlignment.Center,

 VerticalOptions = LayoutOptions.CenterAndExpand,

 TextColor = Color.Blue,

 BackgroundColor = Color.FromRgb(255, 128, 128),

 FontSize = Device.GetNamedSize(NamedSize.Large, typeof(Label)),

 FontAttributes = FontAttributes.Bold | FontAttributes.Italic

 };

 (Content as StackLayout).Children.Insert(0, label);

 }

 }

}

The constructor concludes by accessing the StackLayout that we know is set to the Content

property of the page and inserting the Label at the top. (In the next chapter, you’ll see a much better

way to reference objects in the XAML file by using the x:Name attribute.) You can create the Label

prior to the InitializeComponent call, but you can’t add it to the StackLayout at that time be-

cause InitializeComponent is what causes the StackLayout (and all the other XAML elements) to

be instantiated. Here’s the result:

Chapter 7 XAML vs. code 145

Aside from the text, the two buttons are identical.

You don’t have to spend much time examining the generated code file that the XAML parser cre-

ates, but it’s helpful to understand how the XAML file plays a role both in the build process and during

run time. Also, sometimes an error in the XAML file raises a run-time exception at the LoadFromXaml

call, so you will probably see the generated code file pop up frequently, and you should know what

it is.

The XAML compiler

You have an option whether to compile the XAML during the build process. Compiling the XAML per-

forms validity checks during the build process, reduces the size of the executable, and improves load-

ing time, but it’s somewhat newer than the noncompilation approach, so there might be issues

sometimes.

To indicate that you want to compile all the XAML files in your application, you can insert the fol-

lowing assembly attribute somewhere in a code file. The most convenient place is the Assembly.cs file

in the Properties folder of the PCL project:

[assembly: XamlCompilation(XamlCompilationOptions.Compile)]

You can put it in another C# file, but because it’s an assembly attribute, it needs to be outside any

namespace block. You’ll also need a using directive for Xamarin.Forms.Xaml.

You can alternatively specify that the XAML file for a particular class is compiled:

Chapter 7 XAML vs. code 146

namespace CodePlusXaml

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class CodePlusXamlPage : ContentPage

 {

 public CodePlusXamlPage()

 {

 InitializeComponent();

 …

 }

 }

}

The XamlCompilationOptions enumeration has two members, Compile and Skip, which means

that you can use XamlCompilation as an assembly attribute to enable XAML compilation for all clas-

ses in the project, but skip XAML compilation for individual classes by using the Skip member.

When you do not choose to compile the XAML, the entire XAML file is bound into the executable as

an embedded resource, just like the Edgar Allan Poe story in the BlackCat program in Chapter 4. In-

deed, you can get access to the XAML file at run time by using the GetManifestResourceStream

method. That’s similar to what the LoadFromXaml call in InitializeComponent does. It loads the

XAML file and parses it for a second time, instantiating and initializing all the elements in the XAML file

except for the root element, which already exists.

When you choose to compile the XAML, this process is streamlined somewhat, but the LoadFrom-

Xaml method still needs to instantiate all the elements and build a visual tree.

Platform specificity in the XAML file

Here is the XAML file for a program named ScaryColorList that’s similar to a snippet of XAML that you

saw earlier. But now the repetition is even scarier because each color item is surrounded by a Frame:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaryColorList.ScaryColorListPage">

 <ContentPage.Content>

 <StackLayout>

 <StackLayout.Children>

 <Frame OutlineColor="Accent">

 <Frame.Content>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Red" />

 <Label Text="Red"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 </Frame.Content>

Chapter 7 XAML vs. code 147

 </Frame>

 <Frame OutlineColor="Accent">

 <Frame.Content>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Green" />

 <Label Text="Green"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 </Frame.Content>

 </Frame>

 <Frame OutlineColor="Accent">

 <Frame.Content>

 <StackLayout Orientation="Horizontal">

 <StackLayout.Children>

 <BoxView Color="Blue" />

 <Label Text="Blue"

 VerticalOptions="Center" />

 </StackLayout.Children>

 </StackLayout>

 </Frame.Content>

 </Frame>

 </StackLayout.Children>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

The code-behind file contains only the standard call to InitializeComponent.

Aside from the repetitious markup, this program has a more practical problem: When it runs on iOS,

the top item overlaps the status bar. This problem can be fixed with a call to Device.OnPlatform in

the page’s constructor (just as you saw in Chapter 2). Because Device.OnPlatform sets the Padding

property on the page and doesn’t require anything in the XAML file, it could go either before or after

the InitializeComponent call. Here’s one way to do it:

public partial class ScaryColorListPage : ContentPage

{

 public ScaryColorListPage()

 {

 Padding = Device.OnPlatform(new Thickness(0, 20, 0, 0),

 new Thickness(0),

 new Thickness(0));

 InitializeComponent();

 }

}

Or, you could set a uniform Padding value for all three platforms right in the root element of the

XAML file:

Chapter 7 XAML vs. code 148

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaryColorList.ScaryColorListPage"

 Padding="0, 20, 0, 0">

 <ContentPage.Content>

 …

 </ContentPage.Content>

</ContentPage>

That sets the Padding property for the page. The ThicknessTypeConverter class requires the values

to be separated by commas, but you have the same flexibility as with the Thickness constructor. You

can specify four values in the order left, top, right, and bottom; two values (the first for left and right,

and the second for top and bottom); or one value.

However, you can also specify platform-specific values right in the XAML file by using the OnPlat-

form class, whose name suggests that it is similar in function to the Device.OnPlatform static

method.

OnPlatform is a very interesting class, and it’s worthwhile to gain a sense of how it works. The class

is generic, and it has three properties of type T, as well as an implicit conversion of itself to T that

makes use of the Device.OS value:

public class OnPlatform<T>

{

 public T iOS { get; set; }

 public T Android { get; set; }

 public T WinPhone { get; set; }

 public static implicit operator T(OnPlatform<T> onPlatform)

 {

 // returns one of the three properties based on Device.OS

 }

}

In theory, you might use the OnPlatform<T> class in code, perhaps like this in the constructor of a

ContentPage derivative:

Padding = new OnPlatform<Thickness>

{

 iOS = new Thickness(0, 20, 0, 0),

 Android = new Thickness(0),

 WinPhone = new Thickness(0)

};

You can set an instance of this OnPlatform class directly to the Padding property because the On-

Platform class defines an implicit conversion of itself to the generic argument (in this case

Thickness).

Chapter 7 XAML vs. code 149

However, you shouldn’t use OnPlatform in code. Use Device.OnPlatform instead. OnPlatform

is designed for XAML, and the only really tricky part is figuring out how to specify the generic type

argument.

Fortunately, the XAML 2009 specification includes an attribute designed specifically for generic clas-

ses, called TypeArguments. Because it’s part of XAML itself, it’s used with an x prefix, so it appears as

x:TypeArguments. Here’s how OnPlatform is used in XAML to select among three Thickness

values:

<OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0"

 Android="0"

 WinPhone="0" />

In this example (and in the previous code example), the Android and WinPhone settings aren’t re-

quired because they are the defaults. Notice that the Thickness strings can be set directly to the

properties because those properties are of type Thickness, and hence the XAML parser will use the

ThicknessTypeConverter for converting those strings.

Now that we have the OnPlatform markup, how do we set it to the Padding property of the

Page? By expressing Padding using property-element syntax, of course!

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaryColorList.ScaryColorListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ContentPage.Content>

 …

 </ContentPage.Content>

</ContentPage>

This is how the ScaryColorList program appears in the collection of samples from this book and here’s

how it looks:

Chapter 7 XAML vs. code 150

Similar to OnDevice, OnIdiom distinguishes between Phone and Tablet. For reasons that will be-

come apparent in the next chapter, you should try to restrict the use of OnDevice and OnIdiom to

small chunks of markup rather than large blocks. Their use shouldn’t become a structural element in

your XAML files.

The content property attribute

The XAML file in the ScaryColorList program is actually somewhat longer than it needs to be. You can

delete the ContentPage.Content tags, all the StackLayout.Children tags, and all the

Frame.Content tags, and the program will work the same:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="ScaryColorList.ScaryColorListPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <StackLayout>

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal">

 <BoxView Color="Red" />

 <Label Text="Red"

 VerticalOptions="Center" />

 </StackLayout>

Chapter 7 XAML vs. code 151

 </Frame>

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal">

 <BoxView Color="Green" />

 <Label Text="Green"

 VerticalOptions="Center" />

 </StackLayout>

 </Frame>

 <Frame OutlineColor="Accent">

 <StackLayout Orientation="Horizontal">

 <BoxView Color="Blue" />

 <Label Text="Blue"

 VerticalOptions="Center" />

 </StackLayout>

 </Frame>

 </StackLayout>

</ContentPage>

It looks a lot cleaner now. The only property element left is for the Padding property of ContentPage.

As with almost everything about XAML syntax, this elimination of some property elements is sup-

ported by the underlying classes. Every class used in XAML is allowed to define one property as a con-

tent property (sometimes also called the class’s default property). For this content property, the prop-

erty-element tags are not required, and any XML content within the start and end tags is automatically

assigned to this property. Very conveniently, the content property of ContentPage is Content, the

content property of StackLayout is Children, and the content property of Frame is Content.

These content properties are documented, but you need to know where to look. A class specifies its

content property by using the ContentPropertyAttribute. If this attribute is attached to a class, it

appears in the online Xamarin.Forms API documentation along with the class declaration. Here’s how it

appears in the documentation for ContentPage:

[Xamarin.Forms.ContentProperty("Content")]

public class ContentPage : TemplatedPage

If you say it aloud, it sounds a bit redundant: The Content property is the content property of

ContentPage.

The declaration for the Frame class is similar:

[Xamarin.Forms.ContentProperty("Content")]

public class Frame : ContentView

StackLayout doesn’t have a ContentProperty attribute applied, but StackLayout derives from

Layout<View>, and Layout<T> has a ContentProperty attribute:

[Xamarin.Forms.ContentProperty("Children")]

public abstract class Layout<T> : Layout, IViewContainer<T>

where T : View

http://iosapi.xamarin.com/monodoc.ashx?link=T%3aXamarin.Forms.Layout

Chapter 7 XAML vs. code 152

The ContentProperty attribute is inherited by the classes that derive from Layout<T>, so Children

is the content property of StackLayout.

Certainly, there’s no problem if you include the property elements when they’re not required, but in

most cases they will no longer appear in the sample programs in this book.

Formatted text

Text displayed by a XAML file might involve just a word or two, but sometimes an entire paragraph is

required, perhaps with some embedded character formatting. Specifying character formatting is not

always as obvious, or as easy, in XAML as might be suggested by our familiarity with HTML.

The TextVariations solution has a XAML file that contains seven Label views in a scrollable

StackLayout:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="TextVariations.TextVariationsPage">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness"

 iOS="0, 20, 0, 0" />

 </ContentPage.Padding>

 <ScrollView>

 <StackLayout>

 …

 </StackLayout>

 </ScrollView>

</ContentPage>

Each of the seven Label views shows a somewhat different way of defining the displayed text. For ref-

erence purposes, here’s the program running on all three platforms:

Chapter 7 XAML vs. code 153

The simplest approach involves just setting a few words to the Text attribute of the Label element:

 <Label VerticalOptions="CenterAndExpand"

 Text="Single lines of text are easy." />

You can also set the Text property by breaking it out as a property element:

 <Label VerticalOptions="CenterAndExpand">

 <Label.Text>

 Text can also be content of the Text property.

 </Label.Text>

 </Label>

Text is the content property of Label, so you don’t need the Label.Text tags:

 <Label VerticalOptions="CenterAndExpand">

 Text is the content property of Label.

 </Label>

When you set text as the content of the Label (whether you use the Label.Text tags or not), the text

is trimmed: all white space, including carriage returns, is removed from the beginning and end of the

text. However, all embedded white space is retained, including end-of-line characters.

When you set the Text property as a property attribute, all white space within the quotation marks

is retained, but if the text occupies more than one line in the XAML file, each end-of-line character (or

character sequence) is converted to a single space.

As a result, displaying a whole paragraph of uniformly formatted text is somewhat problematic. The

most foolproof approach is setting Text as a property attribute. You can put the whole paragraph as a

Chapter 7 XAML vs. code 154

single line in the XAML file, but if you prefer to use multiple lines, you should left justify the whole par-

agraph in the XAML file surrounded by quotation marks, like so:

 <Label VerticalOptions="CenterAndExpand"

 Text=

"Perhaps the best way to define a paragraph of

uniformly formatted text is by setting the Text

property as an attribute and left justifying

the block of text in the XAML file. End-of-line

characters are converted to a space character." />

The end-of-line characters are converted to space characters so the individual lines are properly con-

catenated. But watch out: Don’t leave any stray characters at the end or beginning of the individual

lines. Those will show up as extraneous characters within the paragraph.

When multiple lines of text are specified as content of the Label, only white space at the beginning

and end of the text is trimmed. All embedded white space is retained, including end-of-line characters:

 <Label VerticalOptions="CenterAndExpand">

Text as content has the curse

Of breaks at each line's close.

That's a format great for verse

But not the best for prose.

 </Label>

This text is rendered as four separate lines. If you’re displaying lists or poetry in your Xamarin.Forms

application, that’s exactly what you want. Otherwise, probably not.

If your line or paragraph of text requires some nonuniform paragraph formatting, you’ll want to use

the FormattedText property of Label. As you might recall, you set this to a FormattedString ob-

ject and then set multiple Span objects to the Spans collection of the FormattedString. In XAML,

you need property-element tags for Label.FormattedString, but Spans is the content property of

FormattedString:

 <Label VerticalOptions="CenterAndExpand">

 <Label.FormattedText>

 <FormattedString>

 </FormattedString>

 </Label.FormattedText>

 </Label>

Notice that the Text properties of the nonformatted items have spaces at the end or beginning of the

text string, or both, so that the items don’t run into each other.

Chapter 7 XAML vs. code 155

In the general case, however, you might be working with an entire paragraph. You can set the Text

attribute of Span to a long line, or you can wrap it on multiple lines. As with Label, keep the entire

block left justified in the XAML file:

 <Label VerticalOptions="CenterAndExpand">

 <Label.FormattedText>

 <FormattedString>

 <Span Text=

"A paragraph of formatted text requires left justifying

it within the XAML file. But the text can include multiple

kinds of character formatting, including " />

 <Span Text=

" and whatever combinations you might desire to adorn

your glorious prose." />

 </FormattedString>

 </Label.FormattedText>

 </Label>

You’ll notice in the screenshot that the text with the large font size is aligned with the regular text on

the baseline, which is the typographically proper approach, and the line spacing is adjusted to accom-

modate the larger text.

In most Xamarin.Forms programs, neither XAML nor code exist in isolation but work together. Ele-

ments in XAML can trigger events handled in code, and code can modify elements in XAML. In the

next chapter you’ll see how this works.

